博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
SQLServer------聚集索引和非聚集索引的区别
阅读量:5142 次
发布时间:2019-06-13

本文共 2658 字,大约阅读时间需要 8 分钟。

转载:

http://www.cnblogs.com/flashicp/archive/2007/05/08/739245.html

 

建立非聚集索引(vid不是主键)

create index idx_test_vid on test(vid) select COUNT(*) from Test

 

采用聚集索引

select COUNT(*)  from test with(index (pk_test_id)) 

 

 

删除主键,也就删除了聚集索引

alter table test  drop constraint pk_test_id

 

删除非聚集索引

drop index idx_test_vid on test

 

建议:

1、不是只要是索引都能提高性能,而是适当的时候适当的索引可适当地提高性能。什么时候需要建索引主要依据I/O输出信息和查询执行计划具体分析。 2、如何让引擎充分使用索引一些建议2.1 对于长字符串,比如VARCHAR(80)这种类型的索引要比更为紧凑数据类型的索引大很多。同样地,你也不太可能对长字符串列进行全匹配查找。2.2 建立索引 对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。 2.3 应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如: select id from t where num is null 可以在num上设置默认值0,确保表中num列没有null值,然后这样查询: select id from t where num=0 2.4 应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。 2.5 如果在 where 子句中使用参数,也会导致全表扫描。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然而,如果在编译时建立访问计划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描: select id from t where num=@num 可以改为强制查询使用索引: select id from t with(index(索引名)) where num=@num2.6 应尽量避免在 where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描。如: select id from t where num/2=100 应改为: select id from t where num=100*2  2.7 应尽量避免在where子句中对字段进行函数(内置函数)操作,这将导致引擎放弃使用索引而进行全表扫描。如: select id from t where substring(name,1,3)='abc'--name以abc开头的id select id from t where datediff(day,createdate,'2005-11-30')=0--‘2005-11-30’生成的id 应改为: select id from t where name like 'abc%' select id from t where createdate>='2005-11-30' and createdate<'2005-12-1' 2.8 不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。  2.9在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使用,并且应尽可能的让字段顺序与索引顺序相一致。  2.10 不要写一些没有意义的查询,如需要生成一个空表结构: select col1,col2 into #t from t where 1=0 这类代码不会返回任何结果集,但是会消耗系统资源的,应改成这样: create table #t(...)  2.11 很多时候用 exists 代替 in 是一个好的选择: select num from a where num in(select num from b) 用下面的语句替换: select num from a where exists(select 1 from b where num=a.num)  2.12 并不是所有索引对查询都有效,SQL是根据表中数据来进行查询优化的,当索引列有大量数据重复时,SQL查询可能不会去利用索引(除非是位图索引),如一表中有字段sex,male、female几乎各一半,那么即使在sex上建了索引也对查询效率起不了作用。  2.13 索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率,因为 insert 或 update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有必要。 2.14 应尽可能的避免更新 clustered 索引数据列,因为 clustered 索引数据列的顺序就是表记录的物理存储顺序,一旦该列值改变将导致整个表记录的顺序的调整,会耗费相当大的资源。若应用系统需要频繁更新 clustered 索引数据列,那么需要考虑是否应将该索引建为 clustered 索引。  2.15 尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在处理查询和连接时会逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。  2.16 尽可能的使用 varchar/nvarchar 代替 char/nchar,最好用varchar2(自变长度) ,因为首先变长字段存储空间小,可以节省存储空间,其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。  2.17 任何地方都不要使用 select * from t ,用具体的字段列表代替“*”,不要返回用不到的任何字段。

 

转载于:https://www.cnblogs.com/tianhengblogs/p/6781921.html

你可能感兴趣的文章
浅谈卷积神经网络及matlab实现
查看>>
解决ajax请求cors跨域问题
查看>>
《收获,不止Oracle》pdf
查看>>
LinkedList<E>源码分析
查看>>
Real-Time Rendering 笔记
查看>>
如何理解HTML结构的语义化
查看>>
Activity之间的跳转:
查看>>
实验四2
查看>>
Android现学现用第十一天
查看>>
多路复用
查看>>
Python数据可视化之Pygal(雷达图)
查看>>
Java学习笔记--字符串和文件IO
查看>>
转 Silverlight开发历程—(画刷与着色之线性渐变画刷)
查看>>
SQL语法(3)
查看>>
在js在添版本号
查看>>
sublime3
查看>>
Exception Type: IntegrityError 数据完整性错误
查看>>
Nuget:Newtonsoft.Json
查看>>
【luogu4185】 [USACO18JAN]MooTube [并查集]
查看>>
手机号脱敏处理
查看>>